

From saving the oceans.

To safeguarding the planet.

Dynamic Biofilm Protection Intelligent®Ultrasonic Antifouling

Dynamic Biofilm Protection Intelligent®Ultrasonic Antifouling

Dynamic Biofilm Protection Intelligent®Ultrasonic Antifouling

Al-controlled Ultrasonic Antifouling technology Dynamic Biofilm Protection Intelligent® prevents marine growth and biofouling on all liquid carrying surfaces.

- > Save cost from propeller cleaning
- ➤ Reduce fuel consumption and cuts CO₂ emissions
- Reduces OPEX
- ➤ Helps to improve the CII index
- Increases operational efficiency
- > Stops the spread of invasive species
- > Stops the release of heavy metals into our oceans by replacing copper anodes
- > Type approval by LLOYD'S REGISTER and ATEX Approval
- Sustainable & green
- Environmentally safe & friendly

APPLICATIONS

Propeller / Pod Drives, Seawater Cooling Systems,
Freshwater Generators, Bow Thruster / Stern Thruster.

HONOURS

- ➤ Nominated for German Environmental Award 2022 and 2024
- **➤** Winner of **German Innovation Award 2020**
- > 10+ international awards

REFERENCES

Among others:

CAVITATION THEORY

NON-INERTIAL CAVITATION produced by DBPI IS NOT HARMING ANY MATERIALS

INITIAL STEPS OF BIOFOULING

WORKING PRINCIPLE TO PREVENT ORGANIC DEPOSITS

APPLICATIONS

DRAWINGS - PROPELLER

TRANSDUCERS BONDING PROCESS

INSTALLATION - PROPELLER

PROPELLER PROTECTION PRINCIPLE

RESULTS - PROPELLER

1 year with HASYTEC

3 years with HASYTEC

3 years with HASYTEC

DRAWINGS - BOXCOOLER

INSTALLATION - SEA CHEST AND BOX COOLER

Sea Chest

Boxcooler

RESULTS - SEA CHEST

6 months without HASYTEC

18 months with HASYTEC

DRAWINGS - SW COOLING AND FW GEN

SEA WATER COOLING PIPING DIAGRAM

RESULTS - SEA CHEST GRIDS

RESULTS - SEA CHEST GRID

RESULTS - STRAINER HOUSING

12 months without HASYTEC

12 months with HASYTEC

RESULTS - STRAINER

6 months with HASYTEC

6 months with HASYTEC

RESULTS - CROSS OVER PIPE

12 months with HASYTEC

9 months with HASYTEC

RESULTS - CENTRAL COOLER

initial condition after cleaning

11 months with HASYTEC

SYSTEM COMPONENTS

Transducer

installation by glueing with 2-component adhesive

Modular Control UnitPlug & Play connection

Power supply: 85 - 264 V AC 50 | 60Hz Max. electrical consumption: 0,5 kW/h

AI APPLICATION

DBPI ROI PROPELLER APPLICATION

CASE STUDY ROIOPERATING EXPENSES (OPEX)

- ➤ Propeller cleaning ~ 4k €
- ➤ Loss of efficiency results in an increase in fuel consumption of min. +1 % (110t) to avg. 11,000t fuel per year.

110t x 550.00 € = 60.5k € / year

Investments for preventive protection / coatings (i.e. silicone) ~ 15k €

Investment DBPi.6 = 15.4k € (for Propeller up to Ø6000mm)

ROI after ~ 70 days

DBPI ROI FOR SEA CHEST, BOX COOLER, STRAINER, CROSSOVER

1t copper = ~ 8.5 k € $\rightarrow 0.8$ t copper = ~ 6.8 k €

Investment DBPi.8 = 18.8 k € (for Sea Chest, Box Cooler, Strainer, Crossover) → ROI after ~ 33 months

Not considered:

- OPEX (i.e. maintenance)
- GWP (Copper conversion CO2)
- EWR (EU-ETS, 40-60-100%)
 - Investment for coatings
- Repair costs (i.e. biocorrosion on box cooler)

SUMMARY

✓ Annual CO2 savings "Propeller Application"

min. 1% Fuel → 110t Fuel → 330t CO2

- ✓ Annual CO2 savings "SW cooling application"
- Cruise Vessel → 14.4 t Copper
- Merchant Vessel → 3.3 t Copper

THINK DECARBONISATION ... THINK ENVIRONMENTAL PROTECTION ... THINK ERMA TECH GROUP!

Contact us:

sales@ermatechgroup.com